Optimization & Stochastic Gradient Descent

Bibek Poudel

Sections

- Optimization
- Gradient Descent
- Problems with Gradient Descent
- Stochastic Gradient Descent and variants
- Recap

4

- "Doing most with the least"
- "Find most effective or favorable values"
- E.g., minimize cost, maximize profit

-
- Mathematically:

"maximize or minimize a function by systematically choosing input values from an allowed set while fulfilling constraints, if any"

• Statistics, Machine Learning, Data Science \rightarrow Solving optimization

-
- Mathematically:

"maximize or minimize a function by systematically choosing input values from an allowed set while fulfilling constraints, if any"

• Statistics, Machine Learning, Data Science \rightarrow Solving optimization

Find the length and breadth of a rectangle whose area is 100, keeping the perimeter as small as possible.

• Objective Function

Find the length and breadth of a rectangle whose area is 100, keeping the perimeter as small as possible.

• Constraint

10

- Objective Function
- Constraint

Find the length and breadth of a rectangle whose area is 100, keeping the perimeter as small as possible.

Goal: Find the best fit of x and y Solution: x=10, y=10

11

- Hand crafting a solution may not always be feasible
- A high dimensional problem may not be intuitive

12

Gradient Descent

Gradient Descent

13

• First order iterative algorithm to find a local minimum of a differentiable function.

Gradient Descent

14

- First order iterative algorithm to find a local minimum of a differentiable function.
- Key words:
	- ‣ First order
	- ‣ Iterative
	- ‣ Local minimum
	- ‣ Differentiable

- Data (feature, target)
- Goal

17

• Data plot

• Fitted model

• Make inference

- Linear model basics
	- ‣ Simplest equation of a line

- Linear model basics
	- \blacktriangleright Parameter = slope (m)
	- \triangleright Fit/ learn a model = find best 'm'

22

• Start

• Step 1: Random initialization \bullet m = 0.1

- Step 1: Random initialization \bullet m = 0.1
	- ‣ Does not fit well

25

• Need to improve current parameter value

- Need to improve current parameter value
- But… Before we improve it

- Need to improve current parameter value
- But… Before we improve it
- We need to measure how "good" it is

• Step 2: Define a Loss/ Error/ Cost function \blacktriangleright Loss = f (parameters)

• Step 2: Define a Loss/ Error/ Cost function \blacktriangleright Loss = f (parameters)

- Step 2: Define a Loss/ Error/ Cost function
	- \blacktriangleright Loss = f (parameters)
	- ‣ Does any loss function work?

• Step 2: Define a Loss/ Error/ Cost function \rightarrow Regression \rightarrow Mean Squared Error $MSE = \frac{(Error 1)^2 + (Error 2)^2}{2}$ \blacktriangleright $\mathbf{2}$

• Step 2: Define a Loss/ Error/ Cost function ‣ MSE calculation

> Error $1 = (4 - 2) = 2$ Error $2 = (6-3) = 3$ $MSE = \frac{(Error 1)^2 + (Error 2)^2}{2}$ 2 $(2)^2 + (3)^2$ $MSE = -$ 2

 $MSE = 6.5$

• Step 2: Define a Loss/ Error/ Cost function ‣ MSE calculation

- Now we improve
	- \triangleright Gradient = First derivative
	- \blacktriangleright Descent = Move in decreasing direction

- Now we improve
	- \blacktriangleright Gradient = First derivative
	- \blacktriangleright Descent = Move in decreasing direction

- Now we improve
	- \triangleright Gradient = First derivative
	- \blacktriangleright Descent = Move in decreasing direction

41

• Step 3: Perform a gradient descent step ‣ Calculate gradient

- Step 3: Perform a gradient descent step
	- ‣ Calculate gradient
	- ‣ Update parameters

 $\mathbf{m}_{\text{new}} = \mathbf{m}_{\text{old}} - \left[-\frac{d(\text{Loss})}{dm} \right]$ x step_size

- Step 3: Perform a gradient descent step
	- ‣ Calculate gradient
	- ‣ Update parameters

 $\mathbf{m}_{\text{new}} = \mathbf{m}_{\text{old}} - \left[-\frac{d(\text{Loss})}{dm} \right] \times \text{step_size}$ $\mathbf{m}_{\text{new}} = 0.1 - \begin{bmatrix} -2 \\ x \\ 0.1 \end{bmatrix}$ **_{new} =** 0.3

- Step 3: Perform a gradient descent step
	- ‣ Calculate gradient
	- ‣ Update parameters

 $\mathbf{m}_{\text{new}} = \mathbf{m}_{\text{old}} - \left[-\frac{d(\text{Loss})}{dm} \right] \times \text{step_size}$ $\mathbf{m}_{\text{new}} = 0.1 - 2 \times 0.1$ $\mathbf{m}_{\text{new}} = 0.3$

- Step size/ Learning rate
	- ‣ Hyper-parameter
	- ‣ Cant be too large or too small

- Step size/ Learning rate trick
	- ‣ Momentum
	- ‣ Faster convergence

• Step 3: Perform a gradient descent step ‣ One step complete

• Step 4: Repeat Step 3 until stopping criteria is met

• Step 4: Repeat Step 3 until stopping criteria is met \blacktriangleright Solution found at $m = 0.9$

50

- Step 4: Repeat Step 3 until stopping criteria is met
	- \rightarrow Gradient = 0
	- ‣ Update < Threshold
	- ‣ Max iterations

52

- Key words
	- ‣ First order
	- ‣ Iterative
	- ‣ Local minimum
	- ‣ Differentiable

53

- Key words
	- ‣ First order: Differentiate loss once
	- ‣ Iterative
	- ‣ Local minimum
	- ‣ Differentiable

54

- Key words
	- ‣ First order: Differentiate loss once
	- ‣ Iterative: Optimal value by repeated updates
	- ‣ Local minimum
	- ‣ Differentiable

- Key words
	- ‣ First order: Differentiate loss once
	- ‣ Iterative: Optimal value by repeated updates
	-
	- ‣ Differentiable

‣ Local minimum: Each iteration, lowest point in neighborhood

- Key words
	- ‣ First order: Differentiate loss once
	- ‣ Iterative: Optimal value by repeated updates
	- ‣ Local minimum: Each iteration, lowest point in neighborhood
	- ‣ Differentiable: Loss function allowed for differentiation

Gradient Descent Analogy

• Think of a multi-dimensional example

59

60

parameter

• Non-convex loss landscape

parameter

• Non-convex loss landscape Stuck in local minima

62

- Non-convex loss landscape
	- Stuck in local minima
	- \rightarrow Stuck in a saddle point

63

- Non-convex loss landscape
	- \rightarrow Stuck in local minima
	- \rightarrow Stuck in a saddle point
- No convergence guarantees

64

- Non-convex loss landscape
	- \rightarrow Stuck in local minima
	- \rightarrow Stuck in a saddle point
- No convergence guarantees
	- \rightarrow Sub optimal solutions
	- \rightarrow No incentive to update parameters

• When scale and dimensionality of data is high

- When scale and dimensionality of data is high
	- ‣ Model (10,000 params) to classify images
	- \blacktriangleright 100,000 images
	- ‣ Each image 1 Megapixel= 1,000,000 features

67

- When scale and dimensionality of data is high
	- ‣ Model (10,000 params) to classify images
	- \blacktriangleright 100,000 images
	- ‣ Each image 1 Megapixel= 1,000,000 features
	- to obtain gradients?

• At each step, $\sim (1,000,000,000,000,000 + 10,000)$ computations

68

- When scale and dimensionality of data is high
- How to perform gradient descent here?

70

• Stochastic approximation of the true gradient

- Stochastic approximation of the true gradient
	- ‣ Use less data
	- ‣ Take approximate steps
	- ‣ Take them faster!!

72

- Use less data
	- ‣ Randomly sample a batch

Target Population

73

- Use less data
	- ‣ Randomly sample a batch
	- ‣ Batch Gradient Descent (true gradient)
	-

‣ SGD/ Mini-Batch Gradient Descent (sample size >= 1)

74

- Take approximate steps
	- ‣ 2D view of going down the valley

75

- Take approximate steps
	- ‣ 2D view of going down the valley
	- \blacktriangleright Smaller variance $=$ better estimate

76

- Take steps faster
	- ‣ Mini-batch enables parallelism
	- ‣ Enables use of a GPU

- SGD and variance
	- ‣ High variance near optimal solution [\(example\)](http://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html)
	- ‣ Early stopping

78

- SGD in Neural Networks
	-

 \blacktriangleright Backpropagation = calculate a single stochastic gradient

79

- SGD in Neural Networks
	-
	- ‣ Implementation challenges:

 \rightarrow Step-size?

 \rightarrow Mini-batch size?

\blacktriangleright Backpropagation = calculate a single stochastic gradient

80

• Adaptive moment estimation (Adam)

• Adaptive moment estimation (Adam)

‣ **Separate learning rate** (based on moments)

- ‣ Includes momentum
- ‣ Recommended as default*

82

• Adaptive Gradient (AdaGrad)

83

- Adaptive Gradient (AdaGrad)
	- ‣ Learning rate based on frequency of features
	- ‣ Suitable for sparse data (e.g., language)
	- ‣ Accumulates gradients and scales each weight
	- ‣ Disadvantage: infinitesimally small learning rates

84

• Adaptive Gradient (AdaDelta)

- Adaptive Gradient (AdaDelta)
	- ‣ **Solves the problems with AdaGrad**
	- ‣ Smaller updates

• Resilient Back-propagation (Rprop)

87

- Resilient Back-propagation (Rprop)
	- ‣ **Only takes sign of gradients for update**
	- ‣ Invariant to initialization of hyper-parameters
	- ‣ Reinforcement Learning?

- Choice of optimizer matters
	- ‣ Convergence time
	- ‣ Type of problem/ data

Recap

- Optimization
	-

‣ Maximize or minimize an objective function to find best fit

parameters

Recap

• Gradient Descent

‣ Iterative algorithm that uses gradients to solve optimization

Recap

- Stochastic Gradient Descent
	- high scale and dimensionality

‣ Uses random sampling to apply gradient descent on data with

Bibek Poudel bpoudel@memphis.edu poudel-bibek.github.io

But wait... there's more...

What others see

What i see

Potato chip

Gradient descent

Gradient descent is an iterative optimization algorithm for finding the minimum of a function.

WHEN SOMEONE TELLS YOU THAT THEY **JUST TRAINED A MODEL USING TENSORFLOW**

WITHOUT A CIUE ABOUT LINEAR **MGEBRA** most e memerate

