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Optimization
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• “Doing most with the least”


• “Find most effective or favorable values”


•   E.g., minimize cost, maximize profit



Optimization
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• Statistics, Machine Learning, Data Science  Solving optimization


• Mathematically:


“maximize or minimize a function by systematically choosing input 

values from an allowed set while fulfilling constraints, if  any”
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Optimization (Toy example)
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• Objective Function


• Constraint
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• Objective Function


• Constraint



Optimization
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• Hand crafting a solution may not always be feasible


• A high dimensional problem may not be intuitive
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Gradient Descent
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• First order iterative algorithm to find a local minimum of  a 

differentiable function.
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• First order iterative algorithm to find a local minimum of  a 

differentiable function.


• Key words:

‣ First order


‣ Iterative


‣ Local minimum


‣ Differentiable
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Gradient Descent (Worked out example)
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• Data (feature, target)


• Goal
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• Data plot
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• Fitted model
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• Make inference




Gradient Descent (Worked out example)
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• Linear model basics

‣ Simplest equation of  a line
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• Linear model basics

‣ Parameter = slope (m)


‣ Fit/ learn a model = find best ‘m’



Gradient Descent (Worked out example)
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• Start



Gradient Descent (Worked out example)
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• Step 1: Random initialization

‣ m = 0.1
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• Step 1: Random initialization

‣ m = 0.1


‣ Does not fit well
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• Need to improve current parameter value
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• Need to improve current parameter value


• But… Before we improve it
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• Need to improve current parameter value


• But… Before we improve it


• We need to measure how “good” it is



Gradient Descent (Worked out example)
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• Step 2: Define a Loss/ Error/ Cost function 

‣ Loss = f  (parameters)
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• Step 2: Define a Loss/ Error/ Cost function 

‣ Loss = f  (parameters)
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• Step 2: Define a Loss/ Error/ Cost function 

‣ Loss = f  (parameters)


‣ Does any loss function work?




‣ Regression  Mean Squared Error


‣  
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• Step 2: Define a Loss/ Error/ Cost function 
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• Step 2: Define a Loss/ Error/ Cost function 

‣ MSE calculation
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• Step 2: Define a Loss/ Error/ Cost function 

‣ MSE calculation
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• Now we improve 


‣ Gradient = First derivative


‣ Descent = Move in decreasing 

direction
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• Why is the curve convex shaped?
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• Why is the curve convex shaped?
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• Why is the curve convex shaped?
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• Step 3: Perform a gradient descent step

‣ Calculate gradient
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• Step 3: Perform a gradient descent step

‣ Calculate gradient


‣ Update parameters
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• Step 3: Perform a gradient descent step

‣ Calculate gradient


‣ Update parameters
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• Step size/ Learning rate


‣ Hyper-parameter


‣ Cant be too large or too small



Gradient Descent (Worked out example)
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• Step size/ Learning rate trick


‣ Momentum


‣ Faster convergence



Gradient Descent (Worked out example)
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• Step 3: Perform a gradient descent step

‣ One step complete



Gradient Descent (Worked out example)
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• Step 4: Repeat Step 3 until stopping criteria is met



Gradient Descent (Worked out example)
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• Step 4: Repeat Step 3 until stopping criteria is met

‣ Solution found at m = 0.9



Gradient Descent (Worked out example)
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• Step 4: Repeat Step 3 until stopping criteria is met

‣ Gradient = 0


‣ Update < Threshold


‣ Max iterations



Revisit
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• Key words


‣ First order


‣ Iterative


‣ Local minimum


‣ Differentiable
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• Key words


‣ First order: Differentiate loss once


‣ Iterative


‣ Local minimum


‣ Differentiable
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• Key words


‣ First order: Differentiate loss once


‣ Iterative: Optimal value by repeated updates


‣ Local minimum


‣ Differentiable
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• Key words


‣ First order: Differentiate loss once


‣ Iterative: Optimal value by repeated updates


‣ Local minimum: Each iteration, lowest point in neighborhood


‣ Differentiable



Revisit
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• Key words


‣ First order: Differentiate loss once


‣ Iterative: Optimal value by repeated updates


‣ Local minimum: Each iteration, lowest point in neighborhood


‣ Differentiable: Loss function allowed for differentiation
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Gradient Descent Analogy
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• Think of  a multi-dimensional example
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Problems with Gradient Descent
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Problems with gradient descent

• Non-convex loss landscape
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Problems with gradient descent

• Non-convex loss landscape
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Problems with gradient descent

Sub optimal solutions


No incentive to update parameters

• Non-convex loss landscape


• No convergence guarantees


Stuck in local minima


Stuck in a saddle point
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More Problems with gradient descent

• When scale and dimensionality of  data is high
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More Problems with gradient descent

• When scale and dimensionality of  data is high

‣ Model (10,000 params) to classify images


‣ 100,000 images


‣ Each image 1 Megapixel= 1,000,000 features
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More Problems with gradient descent

• When scale and dimensionality of  data is high

‣ Model (10,000 params) to classify images


‣ 100,000 images


‣ Each image 1 Megapixel= 1,000,000 features


‣ At each step, ~(1,000,000,000,000,000 + 10,000) computations 

to obtain gradients?
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More Problems with gradient descent

• When scale and dimensionality of  data is high


• How to perform gradient descent here? 
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Stochastic Gradient Descent
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Stochastic Gradient Descent

• Stochastic approximation of  the true gradient



71

Stochastic Gradient Descent

• Stochastic approximation of  the true gradient

‣ Use less data


‣ Take approximate steps


‣ Take them faster!!
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Stochastic Gradient Descent

• Use less data

‣ Randomly sample a batch
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Stochastic Gradient Descent

• Use less data

‣ Randomly sample a batch


‣ Batch Gradient Descent (true gradient)


‣ SGD/ Mini-Batch Gradient Descent (sample size >= 1)



74

Stochastic Gradient Descent

• Take approximate steps

‣ 2D view of  going down the valley
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Stochastic Gradient Descent

• Take approximate steps

‣ 2D view of  going down the valley


‣ Smaller variance = better estimate
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Stochastic Gradient Descent

• Take steps faster

‣ Mini-batch enables parallelism


‣ Enables use of  a GPU
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Stochastic Gradient Descent

• SGD and variance

‣ High variance near optimal solution (example)


‣ Early stopping

http://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html
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Stochastic Gradient Descent

• SGD in Neural Networks

‣ Backpropagation = calculate a single stochastic gradient
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Stochastic Gradient Descent

• SGD in Neural Networks

‣ Backpropagation = calculate a single stochastic gradient


‣ Implementation challenges:


        Step-size?


        Mini-batch size?
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More Optimizers

• Adaptive moment estimation (Adam)
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More Optimizers

• Adaptive moment estimation (Adam)

‣ Separate learning rate (based on moments)


‣ Includes momentum


‣ Recommended as default*




82

More Optimizers

• Adaptive Gradient (AdaGrad)
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More Optimizers

• Adaptive Gradient (AdaGrad)

‣ Learning rate based on frequency of  features


‣ Suitable for sparse data (e.g., language)


‣ Accumulates gradients and scales each weight


‣ Disadvantage: infinitesimally small learning rates
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More Optimizers

• Adaptive Gradient (AdaDelta)
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More Optimizers

• Adaptive Gradient (AdaDelta)

‣ Solves the problems with AdaGrad


‣ Smaller updates
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More Optimizers

• Resilient Back-propagation (Rprop)
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More Optimizers

• Resilient Back-propagation (Rprop)

‣ Only takes sign of  gradients for update


‣ Invariant to initialization of  hyper-parameters


‣ Reinforcement Learning?
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More Optimizers

• Choice of  optimizer matters

‣ Convergence time


‣ Type of  problem/ data
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Recap
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Recap

• Optimization

‣ Maximize or minimize an objective function to find best fit 

parameters 
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Recap

• Gradient Descent

‣ Iterative algorithm that uses gradients to solve optimization
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Recap

• Stochastic Gradient Descent

‣ Uses random sampling to apply gradient descent on data with 

high scale and dimensionality



Thank You!
Bibek Poudel

bpoudel@memphis.edu

poudel-bibek.github.io

mailto:bpoudel@memphis.edu
http://poudel-bibek.github.io




But wait… there’s more…










