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Optimization
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• “Doing most with the least” 

• “Find most effective or favorable values” 

•   E.g., minimize cost, maximize profit



Optimization
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• Statistics, Machine Learning, Data Science  Solving optimization 

• Mathematically: 

“maximize or minimize a function by systematically choosing input 

values from an allowed set while fulfilling constraints, if  any”
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• Objective Function 

• Constraint



Optimization (Toy example)

10

• Objective Function 

• Constraint



Optimization
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• Hand crafting a solution may not always be feasible 

• A high dimensional problem may not be intuitive
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Gradient Descent



Gradient Descent
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• First order iterative algorithm to find a local minimum of  a 

differentiable function.
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• First order iterative algorithm to find a local minimum of  a 

differentiable function. 

• Key words:

‣ First order 

‣ Iterative 

‣ Local minimum 

‣ Differentiable
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Gradient Descent (Worked out example)
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• Data (feature, target) 

• Goal
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• Data plot 
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• Fitted model 
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• Make inference 
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• Linear model basics

‣ Simplest equation of  a line
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• Linear model basics

‣ Parameter = slope (m) 

‣ Fit/ learn a model = find best ‘m’
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• Start



Gradient Descent (Worked out example)
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• Step 1: Random initialization

‣ m = 0.1 



Gradient Descent (Worked out example)

24

• Step 1: Random initialization

‣ m = 0.1 

‣ Does not fit well 
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• Need to improve current parameter value
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• Need to improve current parameter value 

• But… Before we improve it
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• Need to improve current parameter value 

• But… Before we improve it 

• We need to measure how “good” it is
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• Step 2: Define a Loss/ Error/ Cost function 

‣ Loss = f  (parameters) 
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• Step 2: Define a Loss/ Error/ Cost function 

‣ Loss = f  (parameters) 
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• Step 2: Define a Loss/ Error/ Cost function 

‣ Loss = f  (parameters) 

‣ Does any loss function work? 



‣ Regression  Mean Squared Error 

‣   

Gradient Descent (Worked out example)
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• Step 2: Define a Loss/ Error/ Cost function 
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• Step 2: Define a Loss/ Error/ Cost function 

‣ MSE calculation
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• Step 2: Define a Loss/ Error/ Cost function 

‣ MSE calculation
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• Now we improve  

‣ Gradient = First derivative 

‣ Descent = Move in decreasing 

direction
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• Why is the curve convex shaped? 
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• Why is the curve convex shaped? 
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• Why is the curve convex shaped? 
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• Step 3: Perform a gradient descent step

‣ Calculate gradient 
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• Step 3: Perform a gradient descent step

‣ Calculate gradient 

‣ Update parameters
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• Step 3: Perform a gradient descent step

‣ Calculate gradient 

‣ Update parameters



Gradient Descent (Worked out example)
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• Step size/ Learning rate 

‣ Hyper-parameter 

‣ Cant be too large or too small



Gradient Descent (Worked out example)
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• Step size/ Learning rate trick 

‣ Momentum 

‣ Faster convergence



Gradient Descent (Worked out example)
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• Step 3: Perform a gradient descent step

‣ One step complete



Gradient Descent (Worked out example)
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• Step 4: Repeat Step 3 until stopping criteria is met
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• Step 4: Repeat Step 3 until stopping criteria is met

‣ Solution found at m = 0.9



Gradient Descent (Worked out example)
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• Step 4: Repeat Step 3 until stopping criteria is met

‣ Gradient = 0 

‣ Update < Threshold 

‣ Max iterations
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• Key words 

‣ First order 

‣ Iterative 

‣ Local minimum 

‣ Differentiable
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• Key words 

‣ First order: Differentiate loss once 

‣ Iterative 

‣ Local minimum 

‣ Differentiable
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• Key words 

‣ First order: Differentiate loss once 

‣ Iterative: Optimal value by repeated updates 

‣ Local minimum 

‣ Differentiable
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• Key words 

‣ First order: Differentiate loss once 

‣ Iterative: Optimal value by repeated updates 

‣ Local minimum: Each iteration, lowest point in neighborhood 

‣ Differentiable
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• Key words 

‣ First order: Differentiate loss once 

‣ Iterative: Optimal value by repeated updates 

‣ Local minimum: Each iteration, lowest point in neighborhood 

‣ Differentiable: Loss function allowed for differentiation
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Gradient Descent Analogy
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• Think of  a multi-dimensional example
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Problems with Gradient Descent
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Problems with gradient descent

• Non-convex loss landscape 
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Problems with gradient descent
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Problems with gradient descent

Sub optimal solutions 

No incentive to update parameters

• Non-convex loss landscape 

• No convergence guarantees 

Stuck in local minima 

Stuck in a saddle point 
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More Problems with gradient descent

• When scale and dimensionality of  data is high
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More Problems with gradient descent

• When scale and dimensionality of  data is high

‣ Model (10,000 params) to classify images 

‣ 100,000 images 

‣ Each image 1 Megapixel= 1,000,000 features 
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More Problems with gradient descent

• When scale and dimensionality of  data is high

‣ Model (10,000 params) to classify images 

‣ 100,000 images 

‣ Each image 1 Megapixel= 1,000,000 features 

‣ At each step, ~(1,000,000,000,000,000 + 10,000) computations 

to obtain gradients?
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More Problems with gradient descent

• When scale and dimensionality of  data is high 

• How to perform gradient descent here? 



69

Stochastic Gradient Descent
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Stochastic Gradient Descent

• Stochastic approximation of  the true gradient
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Stochastic Gradient Descent

• Stochastic approximation of  the true gradient

‣ Use less data 

‣ Take approximate steps 

‣ Take them faster!!
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Stochastic Gradient Descent

• Use less data

‣ Randomly sample a batch
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Stochastic Gradient Descent

• Use less data

‣ Randomly sample a batch 

‣ Batch Gradient Descent (true gradient) 

‣ SGD/ Mini-Batch Gradient Descent (sample size >= 1)
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Stochastic Gradient Descent

• Take approximate steps

‣ 2D view of  going down the valley
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Stochastic Gradient Descent

• Take approximate steps

‣ 2D view of  going down the valley 

‣ Smaller variance = better estimate 
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Stochastic Gradient Descent

• Take steps faster

‣ Mini-batch enables parallelism 

‣ Enables use of  a GPU
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Stochastic Gradient Descent

• SGD and variance

‣ High variance near optimal solution (example) 

‣ Early stopping

http://fa.bianp.net/teaching/2018/COMP-652/stochastic_gradient.html
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Stochastic Gradient Descent

• SGD in Neural Networks

‣ Backpropagation = calculate a single stochastic gradient
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Stochastic Gradient Descent

• SGD in Neural Networks

‣ Backpropagation = calculate a single stochastic gradient 

‣ Implementation challenges: 

        Step-size? 

        Mini-batch size? 
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More Optimizers

• Adaptive moment estimation (Adam)
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More Optimizers

• Adaptive moment estimation (Adam)

‣ Separate learning rate (based on moments) 

‣ Includes momentum 

‣ Recommended as default* 
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More Optimizers

• Adaptive Gradient (AdaGrad)
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More Optimizers

• Adaptive Gradient (AdaGrad)

‣ Learning rate based on frequency of  features 

‣ Suitable for sparse data (e.g., language) 

‣ Accumulates gradients and scales each weight 

‣ Disadvantage: infinitesimally small learning rates 
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More Optimizers

• Adaptive Gradient (AdaDelta)
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More Optimizers

• Adaptive Gradient (AdaDelta)

‣ Solves the problems with AdaGrad 

‣ Smaller updates 
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More Optimizers

• Resilient Back-propagation (Rprop)
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More Optimizers

• Resilient Back-propagation (Rprop)

‣ Only takes sign of  gradients for update 

‣ Invariant to initialization of  hyper-parameters 

‣ Reinforcement Learning? 
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More Optimizers

• Choice of  optimizer matters

‣ Convergence time 

‣ Type of  problem/ data 
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Recap
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Recap

• Optimization

‣ Maximize or minimize an objective function to find best fit 

parameters 
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Recap

• Gradient Descent

‣ Iterative algorithm that uses gradients to solve optimization
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Recap

• Stochastic Gradient Descent

‣ Uses random sampling to apply gradient descent on data with 

high scale and dimensionality



Thank You!
Bibek Poudel 
bpoudel@memphis.edu 
poudel-bibek.github.io

mailto:bpoudel@memphis.edu
http://poudel-bibek.github.io




But wait… there’s more…










