Optimization & Stochastic Gradient Descent

Bibek Poudel

Sections

- Optimization
- Gradient Descent
- Problems with Gradient Descent
- Stochastic Gradient Descent and variants
- Recap

- "Doing most with the least"
- "Find most effective or favorable values"
- E.g., minimize cost, maximize profit

4

- Mathematically:

"maximize or minimize a function by systematically choosing input values from an allowed set while fulfilling constraints, if any"

• Statistics, Machine Learning, Data Science \rightarrow Solving optimization

- Mathematically:

"maximize or minimize a function by systematically choosing input values from an allowed set while fulfilling constraints, if any"

• Statistics, Machine Learning, Data Science \rightarrow Solving optimization

Find the length and breadth of a rectangle whose area is 100, keeping the perimeter as small as possible.

• Objective Function

Find the length and breadth of a rectangle whose area is 100, keeping the perimeter as small as possible.

• Constraint

- Objective Function
- Constraint

Find the length and breadth of a rectangle whose area is 100, keeping the perimeter as small as possible.

Goal: Find the best fit of x and y Solution: x=10, y=10

- Hand crafting a solution may not always be feasible
- A high dimensional problem may not be intuitive

not always be feasible nay not be intuitive

Gradient Descent

Gradient Descent

• First order iterative algorithm to find a local minimum of a differentiable function.

Gradient Descent

- First order iterative algorithm to find a local minimum of a differentiable function.
- Key words:
 - First order
 - Iterative
 - Local minimum
 - Differentiable

- Data (feature, target)
- Goal

weight (lb.)	height (ft.)
120	4
175	6

• Data plot

• Fitted model

• Make inference

- Linear model basics
 - Simplest equation of a line

- Linear model basics
 - Parameter = slope (m)
 - Fit/ learn a model = find best 'm'

• Start

22

• Step 1: Random initialization hm = 0.1

- Step 1: Random initialization M = 0.1
 - Does not fit well

• Need to improve current parameter value

- Need to improve current parameter value
- But... Before we improve it

- Need to improve current parameter value
- But... Before we improve it
- We need to measure how "good" it is

27

• Step 2: Define a Loss/ Error/ Cost function • Loss = f (parameters)

• Step 2: Define a Loss/ Error/ Cost function • Loss = f (parameters)

- Step 2: Define a Loss/ Error/ Cost function
 - Loss = f (parameters)
 - Does any loss function work?

• Step 2: Define a Loss/ Error/ Cost function • Regression \rightarrow Mean Squared Error heig • MSE = $\frac{(\text{Error 1})^2 + (\text{Error 2})^2}{2}$

• Step 2: Define a Loss/ Error/ Cost function ► MSE calculation

> Error 1 = (4 - 2) = 2Error 2 = (6 - 3) = 3 $MSE = \frac{(Error 1)^2 + (Error 2)^2}{2}$ 2 $(2)^{2} + (3)^{2}$ MSE = -2

MSE = 6.5

• Step 2: Define a Loss/ Error/ Cost function ► MSE calculation

- Now we improve
 - Gradient = First derivative
 - Descent = Move in decreasing
 direction

sing

- Now we improve
 - Gradient = First derivative
 - Descent = Move in decreasing direction

- Now we improve
 - Gradient = First derivative
 - Descent = Move in decreasing direction

37

41

• Step 3: Perform a gradient descent step • Calculate gradient

- Step 3: Perform a gradient descent step
 - Calculate gradient
 - Update parameters

 $\mathbf{m}_{\text{new}} = \mathbf{m}_{\text{old}} - \left[-\frac{d(\text{Loss})}{dm}\right]\mathbf{x} \text{ step}_{\text{size}}$

- Step 3: Perform a gradient descent step
 - Calculate gradient
 - Update parameters

 $\mathbf{m}_{new} = \mathbf{m}_{old} - \left[-\frac{d(Loss)}{dm}\right] \mathbf{x} \text{ step_size}$ $\mathbf{m}_{new} = 0.1 - \left[-2\right] \mathbf{x} 0.1$ $\mathbf{m}_{new} = 0.3$

- Step 3: Perform a gradient descent step
 - Calculate gradient
 - Update parameters

 $\mathbf{m}_{\text{new}} = \mathbf{m}_{\text{old}} - \left[-\frac{d(\text{Loss})}{dm}\right] \mathbf{x} \text{ step_size}$ $\mathbf{m}_{\text{new}} = 0.1 - \left[-2\right] \mathbf{x} \ 0.1$ $\mathbf{m}_{\text{new}} = 0.3$

- Step size/ Learning rate
 - Hyper-parameter
 - Cant be too large or too small

- Step size/ Learning rate trick
 - Momentum
 - Faster convergence

• Step 3: Perform a gradient descent step • One step complete

• Step 4: Repeat Step 3 until stopping criteria is met

• Step 4: Repeat Step 3 until stopping criteria is met • Solution found at m = 0.9

- Step 4: Repeat Step 3 until stopping criteria is met
 - Gradient = 0
 - Update < Threshold</p>
 - Max iterations

- Key words
 - First order
 - Iterative
 - Local minimum
 - Differentiable

52

- Key words
 - First order: Differentiate loss once
 - Iterative
 - Local minimum
 - Differentiable

53

- Key words
 - First order: Differentiate loss once
 - Iterative: Optimal value by repeated updates
 - Local minimum
 - Differentiable

54

- Key words
 - First order: Differentiate loss once
 - Iterative: Optimal value by repeated updates

 - Differentiable

Local minimum: Each iteration, lowest point in neighborhood

- Key words
 - First order: Differentiate loss once
 - Iterative: Optimal value by repeated updates
 - Local minimum: Each iteration, lowest point in neighborhood
 - Differentiable: Loss function allowed for differentiation

Gradient Descent Analogy

• Think of a multi-dimensional example

parameter

• Non-convex loss landscape

parameter

Non-convex loss landscape
→ Stuck in local minima

- Non-convex loss landscape
 - \rightarrow Stuck in local minima
 - \rightarrow Stuck in a saddle point

62

- Non-convex loss landscape
 - \rightarrow Stuck in local minima
 - \rightarrow Stuck in a saddle point
- No convergence guarantees

63

- Non-convex loss landscape
 - \rightarrow Stuck in local minima
 - \rightarrow Stuck in a saddle point
- No convergence guarantees
 - \rightarrow Sub optimal solutions
 - \rightarrow No incentive to update parameters

64

• When scale and dimensionality of data is high

- When scale and dimensionality of data is high
 - ► Model (10,000 params) to classify images
 - ▶ 100,000 images
 - Each image 1 Megapixel= 1,000,000 features

- When scale and dimensionality of data is high
 - Model (10,000 params) to classify images
 - ▶ 100,000 images
 - Each image 1 Megapixel= 1,000,000 features
 - to obtain gradients?

• At each step, $\sim (1,000,000,000,000,000 + 10,000)$ computations

67

- When scale and dimensionality of data is high
- How to perform gradient descent here?

68

• Stochastic approximation of the true gradient

70

- Stochastic approximation of the true gradient
 - Use less data
 - Take approximate steps
 - Take them faster!!

- Use less data
 - Randomly sample a batch

Target Population

72
- Use less data
 - Randomly sample a batch
 - Batch Gradient Descent (true gradient)

SGD/ Mini-Batch Gradient Descent (sample size >= 1)

73

- Take approximate steps
 - 2D view of going down the valley

74

- Take approximate steps
 - 2D view of going down the valley
 - Smaller variance = better estimate

e valley estimate

75

- Take steps faster
 - Mini-batch enables parallelism
 - Enables use of a GPU

- SGD and variance
 - High variance near optimal solution (<u>example</u>)
 - Early stopping

- SGD in Neural Networks

Backpropagation = calculate a single stochastic gradient

78

- SGD in Neural Networks

 - Implementation challenges:

 \rightarrow Step-size?

 \rightarrow Mini-batch size?

Backpropagation = calculate a single stochastic gradient

79

• Adaptive moment estimation (Adam)

80

• Adaptive moment estimation (Adam)

• Separate learning rate (based on moments)

- Includes momentum
- Recommended as default*

• Adaptive Gradient (AdaGrad)

82

- Adaptive Gradient (AdaGrad)
 - Learning rate based on frequency of features
 - Suitable for sparse data (e.g., language)
 - Accumulates gradients and scales each weight
 - Disadvantage: infinitesimally small learning rates

83

• Adaptive Gradient (AdaDelta)

84

- Adaptive Gradient (AdaDelta)
 - Solves the problems with AdaGrad
 - Smaller updates

• Resilient Back-propagation (Rprop)

- Resilient Back-propagation (Rprop)
 - Only takes sign of gradients for update
 - Invariant to initialization of hyper-parameters
 - Reinforcement Learning?

87

- Choice of optimizer matters
 - Convergence time
 - Type of problem/ data

Recap

- Optimization

parameters

• Maximize or minimize an objective function to find best fit

Recap

• Gradient Descent

• Iterative algorithm that uses gradients to solve optimization

Recap

- Stochastic Gradient Descent
 - high scale and dimensionality

• Uses random sampling to apply gradient descent on data with

92

Bibek Poudel bpoudel@memphis.edu poudel-bibek.github.io

But wait... there's more...

What others see

What i see

Potato chip

Gradient descent

Gradient descent is an iterative optimization algorithm for finding the minimum of a function.

WHEN SOMEONE TELLS YOU THAT THEY JUST TRAINED A MODEL USING TENSORFLOW

WITHOUT A CLUE ABOUT LINEAR ALGEBRA

