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» Looks like a 7 to human eye
» But a model thinks 1ts a 3




Christian Szegedy

Google Research
.‘ N ‘ Verified email at google.com

q@ Machine learning Computer Vision Atrtificial Intelligence Automated Reasoning
»

e “Intriguing properties of neural networks”

» ICLR 2014, ~ 9000 citations
» Birth ot Adversarial Machine Learning (AML)


https://arxiv.org/abs/1312.6199
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e Recent interest in AML
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Adversarial examples 1in action

* Autonomous driving and traffic signs

 Video
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https://www.youtube.com/watch?v=4uGV_fRj0UA

Adversarial examples 1in action

* Surveillance, facial recognition

° ama;on @E:é:f;;‘oif;);ﬁ" All ¥ adversarial tshirt
\—/
* 1CO

— All Amazon Basics Early Black Friday Deals Best Sellers Customer Service Gift Cards Coupons Pet Supplies Health & Household Shopper Toolkit

Amazon Fashion Women Men Kids Luggage Sales & Deals New Arrivals Our

The pharmacy that really delivers

Brand: Adversarial Anti-Facial Recognition Camouflage
Adversarial Anti-Facial Recognition Camouflage Invisibility

T-Shirt
WKk r v 4ratings

Learn more »

< Back to results

-5

ey

'*.

Price: $19.99 & FREE Returns v

Fit Type: Men

Men Women Youth

Color: Black

gt REETR

Size:

Select v

Solid colors: 100% Cotton; Heather Grey: 90% Cotton, 10% Polyester; All Other Heathers: 50%
Cotton, 50% Polyester

Imported

Machine Wash

Adversarial Anti-Facial Recognition Camouflage Invisibility. This abstract clothing simulation uses



https://www.youtube.com/watch?v=MIbFvK2S9g8

Adversarial examples 1in action

* Reinforcement learning

 Video
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https://www.youtube.com/watch?v=MIbFvK2S9g8

Optimization problem



T'he optimization problem

* “Lp norm” distance metric

Image 1

Image 2
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T'’he optimization problem

* “Lp norm” distance metric
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18 1220 29
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T'’he optimization problem

* “Lp norm” distance metric

» 1.0 distance = 2

5/ 128 | 64

18 1220 59

100 50 | 33

Image 1

58 128 64

18 99 359

100 50 | 33

Image 2
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T'’he optimization problem

* “Lp norm” distance metric

» 1.1 distance = |37 - 38| + [220 - 99|

5/ 128 | 64
18 1220 59

100 50 | 33

Image 1

58 128 64

18 99 359

100 50 | 33

Image 2
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T'’he optimization problem

* “Lp norm” distance metric

» 1.2 distance = (37 - 38)2 + (220 - 99)?

5/ 128 | 64
18 1220 59

100 50 | 33

Image 1

58 128 64

18 99 359

100 50 | 33

Image 2
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T'’he optimization problem

* “Lp norm” distance metric

» [.oo distance = (220 - 99) , max difterence

5/ 128 | 64
18 1220 59

100 50 | 33

Image 1

30 128 | 64

18 199 39

100 50 | 33
Image 2
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T'’he optimization problem

* Objective + constraints
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T'’he optimization problem

* Objective + constraints

minimize D(x, x + d;)
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T'’he optimization problem

* Objective + constraints

minimize D(x, x + d;)

subject to:

f(z) # f(z + dz)
T+ 0, € [0,1]"
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Attacks
» Fast Gradient Sign Method (FGSM)

» “Lxplaining and harnessing adversarial examples™, Goodtellow et.

al. 2015
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Attacks
» Fast Gradient Sign Method (FGSM)

» “Lxplaining and harnessing adversarial examples™, Goodtellow et.

al. 2015

+ .007 X
| T +
T SIgn(Vm J(B, L, y)) esign(Vm J(B, L, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence
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Attacks
» Fast Gradient Sign Method (FGSM)

xadv:x+5

) = € sign(va(97$a y))
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Attacks
» Fast Gradient Sign Method (FGSM)

) = € sign(VxJ(97$a y))
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Attacks
» Fast Gradient Sign Method (FGSM)

0 = € sign(VJ

05, Y))

— larget label

Input 1image
— Model parameters
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Attacks
» Fast Gradient Sign Method (FGSM)

L.oss value

|

— larget label

Input 1image
— Model parameters
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Attacks
» Fast Gradient Sign Method (FGSM)

Gradient w.rt.
mput

Loss value

e
0 = € sign(VJ

\
05 Y))

— larget label

Input 1image
— Model parameters
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Attacks
» Fast Gradient Sign Method (FGSM)

Gradient wrt,
Input

L.oss value

N
5 — € |Slgn|(VCBJ(L9_7I$‘7y))

— Just take
the sign

— larget label

Input 1image

— Model parameters
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Attacks

» Fast Gradient Sign Method (FGSM)

Gradient wrt,

5:|6

|

Input

L.oss value

1
sign(VaJ (0,2, y))

Scale —

— Just take
the sign

— larget label

Input 1mage

— Model parameters
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Attacks
* Projected Gradient Descent (PGD)
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Attacks
* Projected Gradient Descent (PGD)

» Add random noise + take multiple smaller FGSM steps

» lterative
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Attacks
* Projected Gradient Descent (PGD)

» Add random noise + take multiple smaller FGSM steps

» lterative
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Attacks

* One pixel attack

. ™

SHIP HORSE
CAR(99.7%) FROG(99.9%)

HORSE DOG
CAT(75.5%)

DEER
AIRPLANE(82.4%) DOG(86.4%)

DEER BIRD
AIRPLANE(49.8%) FROG(88.8%)
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DEER
AIRPLANE(85.3%)

BIRD
FROG(86.5%)

SHIP
AIRPLANE(88.2%)
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'I'hreat models
 Black-box

Input

—> Model 1

A

> Model 2

—>  Predictions

< J
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'I'hreat models
 Black-box

Input

—> Target model —>  Predictions

A

Substitute « )

model
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'I'hreat models
e White-box

» ‘Iraining data, hyper-parameters, model architecture
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Detenses
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Detenses

* Gradient Masking

» Hide gradient information

\\ \ ' \ \ WY ' \ ‘,. ] “‘n \ | \ ‘ : MRS | ¥ .1 "}l" ) /ey | ,: {1 ’/.,‘.;"/’ w / ///,/’/, ¥4 /

» Discarded T




Detenses

* Adversarial lraining

» Most succestul
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'T'heories



'T'heories

* Intuitively make sense but discarded

» Overfitting
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'T'heories

* Intuitively make sense but discarded

o

» Overfitting
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'T'heories

* Intuitively make sense but discarded

» Excessive linearity
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'T'heories

* Intuitively make sense but discarded

» Excessive linearity

Activation Functions

J
- o1 10

Sigmoid Leaky RelLU
0'(113) _ 1_{_(18_32 max(O.l:z:, il?)
tanh Maxout
tanh(a:) 0 ? maX(?l)Tm + b1, ’(1)2T.’13 + b2)
ReLU / ELU
0 T x>0
maX( ’ LE) r— § {Oz(e‘” —1) =<0

m/
10
-2
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'T'heories

* Intuitively make sense but discarded

» Excessive inearity

o1



'T'heories

* Intuitively make sense but discarded

» Adversarial examples are bugs
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'T'heories

* Intuitively make sense but discarded

» Adversarial examples are bugs

Useless features the Useful features that are
model is unreasonably responsible for good
sensitive to classification

. i

e
~

Adversary only changes these features to
create an adversarial example
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'T'heories

* Widely accepted
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'T'heories

* Widely accepted

» “Adversarial examples are not bugs, they are teatures” lllyas et.

al. 2017
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'T'heories

* Widely accepted

» “Adversarial examples are not bugs, they are teatures” lllyas et.

al. 2017

Robust features Non-robust features
Useless Correlated with label Correlated with label, but can
features  €ven with adversary be flipped within, e.g., £> ball

U L |
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A more fundamental question
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A more fundamental question

* Do our models really “learn™?
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A more fundamental question

* Do our models really “learn™?

* Does the industry care about ALs? Video
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https://www.youtube.com/watch?v=dEv99vxKjVI&t=1617s

Thank You!

Bibek Poudel
bpoudel@memphis.edu



mailto:bpoudel@memphis.edu




But wait... there’s more...



Al Camera Ruins Soccer Game For Fans After
Mistaking Referee's Bald Head For Ball

69.7K ;
SHARES .




