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• Can I craft an optimization problem?
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• Can I craft an optimization problem?

‣ Looks like a 7 to human eye 
‣ But a model thinks its a 3
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• “Intriguing properties of  neural networks” 

‣ ICLR 2014, ~ 9000 citations 
‣ Birth of  Adversarial Machine Learning (AML)

https://arxiv.org/abs/1312.6199
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• Recent interest in AML 
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Adversarial examples in action
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• Video

• Autonomous driving and traffic signs

https://www.youtube.com/watch?v=4uGV_fRj0UA
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• Surveillance, facial recognition

• Video

https://www.youtube.com/watch?v=MIbFvK2S9g8
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• Reinforcement learning

• Video

https://www.youtube.com/watch?v=MIbFvK2S9g8
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Optimization problem
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• “Lp norm” distance metric 
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• “Lp norm” distance metric 

‣ L0 distance = 2



The optimization problem
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• “Lp norm” distance metric 

‣ L1 distance = |37 - 38| + |220 - 99|



The optimization problem
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• “Lp norm” distance metric 

‣ L2 distance = (37 - 38)2 + (220 - 99)2



The optimization problem

21

• “Lp norm” distance metric 

‣ L∞ distance = (220 - 99) , max difference



The optimization problem
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• Objective + constraints 
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• Objective + constraints 
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• Fast Gradient Sign Method (FGSM) 

• “Explaining and harnessing adversarial examples”, Goodfellow et. 

al. 2015
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• Projected Gradient Descent (PGD) 
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• Projected Gradient Descent (PGD) 

‣ Add random noise + take multiple smaller FGSM steps 
‣ Iterative 
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• Projected Gradient Descent (PGD) 

‣ Add random noise + take multiple smaller FGSM steps 
‣ Iterative 
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• One pixel attack 
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• Black-box
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• Black-box



Threat models
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• White-box

‣ Training data, hyper-parameters, model architecture
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• Gradient Masking

‣ Hide gradient information 
‣ Discarded



Defenses
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• Adversarial Training

‣ Most succesful



Theories
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• Intuitively make sense but discarded

‣ Overfitting
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• Intuitively make sense but discarded

‣ Excessive linearity
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• Intuitively make sense but discarded

‣ Adversarial examples are bugs 
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‣ “Adversarial examples are not bugs, they are features” Illyas et. 
al. 2017 
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‣ “Adversarial examples are not bugs, they are features” Illyas et. 
al. 2017 
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• Do our models really “learn”?



A more fundamental question
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• Do our models really “learn”? 

• Does the industry care about AEs? Video

https://www.youtube.com/watch?v=dEv99vxKjVI&t=1617s
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But wait… there’s more…




