Introduction to Adversarial Machine Learning

Bibek Poudel

Sections

- Origin story
- Optimization problem
- Attacks
- Defenses
- Theories

Origin story

<u>Google Research</u> Verified email at google.com Machine learning Computer Vision Artificial Intelligence Automated Reasoning

4

Google Research Verified email at google.com Machine learning Computer Vision Artificial Intelligence Automated Reasoning

219562 1.8 12500664 6701636370 8 a 66 398725 598365723 58084 q q7964706923

Google Research Verified email at google.com Machine learning Computer Vision Artificial Intelligence Automated Reasoning

7

 \boldsymbol{c}

?

?

3

<u>Google Research</u> Verified email at google.com Machine learning Computer Vision Artificial Intelligence Automated Reasoning

• Can I craft an optimization problem?

Google Research Verified email at google.com Machine learning Computer Vision Artificial Intelligence Automated Reasoning

- Can I craft an optimization problem?
 - Looks like a 7 to human eye
 - But a model thinks its a 3

Google Research Verified email at google.com Machine learning Computer Vision Artificial Intelligence Automated Reasoning

• "Intriguing properties of neural networks" • ICLR 2014, ~ 9000 citations • Birth of Adversarial Machine Learning (AML)

Google Research Verified email at google.com

• Recent interest in AML

10

- Autonomous driving and traffic signs
- Video lacksquare

- Surveillance, facial recognition
- <u>Video</u>

Back to results

elive I em	er to Bibek phis 38111	All 🔻	adversarial tsh	irt						Q	
s	Early Black Fr	iday Deals	Best Sellers	Customer Ser	vice	Gift Cards	Coupons	Pet Supplies	Health & Household	Shopper Toolkit	Outdoo
nio	n	Women	Men		Kids		Luggage	Sales	& Deals	New Arrivals	Our
			amaz	on pharmacy		The pharm	lacy that <u>re</u>	ally delivers		Learn more >	

Brand: Adversarial Anti-Facial Recognition Camouflage

Adversarial Anti-Facial Recognition Camouflage Invisibility
T-Shirt
★★★☆ × 4 ratings
Price: \$19.99 & FREE Returns ~
Fit Type: Men
Men Women Youth
Color: Black
Size:
Select V
• Solid colors: 100% Cotton; Heather Grey: 90% Cotton, 10% Polyester; All Other Heathers: 50%

- Cotton, 50% Polyester
- Imported
- Machine Wash
- Adversarial Anti-Facial Recognition Camouflage Invisibility. This abstract clothing simulation uses

13

- Reinforcement learning
- <u>Video</u>

14

Optimization problem

• "Lp norm" distance metric

• "Lp norm" distance metric

37	128	64
18	220	59
100	50	33

38	128	64
18	99	59
100	50	33

Image 1

Image 2

17

• "Lp norm" distance metric

• L0 distance = 2

37	128	64
18	220	59
100	50	33

38	128	64
18	99	59
100	50	33

Image 1

• "Lp norm" distance metric

L1 distance = |37 - 38| + |220 - 99|

37	128	64
18	220	59
100	50	33

38	128	64
18	99	59
100	50	33

Image 1

• "Lp norm" distance metric

• L2 distance = $(37 - 38)^2 + (220 - 99)^2$

37	128	64
18	220	59
100	50	33

38	128	64
18	99	59
100	50	33

Image 1

• "Lp norm" distance metric

• L ∞ distance = (220 - 99), max difference

37	128	64
18	220	59
100	50	33

38	128	64
18	99	59
100	50	33

Image 1

• Objective + constraints

22

• Objective + constraints

minimize $D(x, x + \delta_x)$

23

• Objective + constraints

subject to: $x + \delta$

minimize $D(x, x + \delta_x)$ $f(x) \neq f(x + \delta_x)$

$$\neq J (x + o_x) \\ \delta_x \in [0, 1]^n$$

24

- Fast Gradient Sign Method (FGSM)
- al. 2015

• "Explaining and harnessing adversarial examples", Goodfellow et.

- Fast Gradient Sign Method (FGSM)
- al. 2015

 $+.007 \times$

 \boldsymbol{x}

"panda" 57.7% confidence

• "Explaining and harnessing adversarial examples", Goodfellow et.

=

 $sign(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$

"nematode" 8.2% confidence

x + $\epsilon \operatorname{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "gibbon" 99.3 % confidence

27

• Fast Gradient Sign Method (FGSM)

 $x_{adv} = x + \delta$

• Fast Gradient Sign Method (FGSM)

$\delta = \epsilon \operatorname{sign}(\nabla_x J(\theta, x, y))$

• Fast Gradient Sign Method (FGSM)

$\delta = \epsilon \operatorname{sign}(\nabla_x J(\theta, x, y))$ Target label Input image Model parameters

• Fast Gradient Sign Method (FGSM)

• Fast Gradient Sign Method (FGSM)

Gradient w.r.t. input

• Fast Gradient Sign Method (FGSM)

Gradient w.r.t. input

$$\delta = \epsilon \operatorname{sign}$$

• Fast Gradient Sign Method (FGSM)

• Projected Gradient Descent (PGD)

- Projected Gradient Descent (PGD)
 - Add random noise + take multiple smaller FGSM steps
 - Iterative

PGD) Aultiple smaller FGSM steps

- Projected Gradient Descent (PGD)
 - Add random noise + take multiple smaller FGSM steps
 - Iterative

Input

PGD) nultiple smaller FGSM steps

FGSM

PGD

37

• One pixel attack

SHIP CAR(99.7%)

HORSE DOG(70.7%)

CAR AIRPLANE(82.4%)

DEER AIRPLANE(49.8%)

HORSE FROG(99.9%)

DOG CAT(75.5%)

DEER DOG(86.4%)

BIRD FROG(88.8%)

DEER AIRPLANE(85.3%)

BIRD FROG(86.5%)

CAT BIRD(66.2%)

SHIP AIRPLANE(88.2%)

• Black-box

• Black-box

41

- White-box
 - Training data, hyper-parameters, model architecture

42

Defenses

Defenses

- Gradient Masking
 - Hide gradient information
 - Discarded

Defenses

- Adversarial Training
 - Most succesful

- Intuitively make sense but discarded
 - Overfitting

- Intuitively make sense but discarded
 - Overfitting

• Intuitively make sense but discarded

• Excessive linearity

• Intuitively make sense but discarded

• Excessive linearity

Sigmoid

tanh tanh(x)

ReLU $\max(0, x)$

• Intuitively make sense but discarded

• Excessive linearity

- Intuitively make sense but discarded
 - Adversarial examples are bugs

52

- Intuitively make sense but discarded
 - Adversarial examples are bugs

Useful features that are **Useless** features the responsible for good model is unreasonably classification sensitive to Adversary only changes these features to create an adversarial example

53

• Widely accepted

54

- Widely accepted
 - 'Adversarial examples are n al. 2017

• "Adversarial examples are not bugs, they are features" Illyas et.

• Widely accepted

"Adversarial examples are r
al. 2017

• 'Adversarial examples are not bugs, they are features' Illyas et.

Robust features

Correlated with label even with adversary

Non-robust features

Correlated with label, but can be flipped within, e.g., ℓ_2 ball

A more fundamental question

57

A more fundamental question

• Do our models really "learn"?

58

A more fundamental question

- Do our models really "learn"?
- Does the industry care about AEs? <u>Video</u>

Thank You!

Bibek Poudel bpoudel@memphis.edu

But wait... there's more...

Al Camera Ruins Soccer Game For Fans After Mistaking Referee's Bald Head For Ball

Share on Facebook

