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Abstract— Reinforcement learning (RL) holds significant
promise for adaptive traffic signal control. While existing RL-
based methods demonstrate effectiveness in reducing vehicular
congestion, their predominant focus on vehicle-centric opti-
mization leaves pedestrian mobility needs and safety challenges
unaddressed. In this paper, we present a deep RL framework
for adaptive control of eight traffic signals along a real-world
urban corridor, jointly optimizing both pedestrian and vehic-
ular efficiency. Our single-agent policy is trained using real-
world pedestrian and vehicle demand data derived from Wi-
Fi logs and video analysis. The results demonstrate significant
performance improvements over traditional fixed-time signals,
reducing average wait times per pedestrian and per vehicle by
up to 67% and 52% respectively, while simultaneously decreas-
ing total accumulated wait times for both groups by up to 67%
and 53%. Additionally, our results demonstrate generalization
capabilities across varying traffic demands, including conditions
entirely unseen during training, validating RL’s potential for
developing transportation systems that serve all road users.

I. INTRODUCTION

Traffic congestion has become a silent tax on modern
civilization. Each year, drivers in U.S. cities waste an average
of 54 hours stuck in traffic [1], costing over 160 billion in
lost productivity [2]. With urban cores in metropolitan areas
experiencing an increase of traffic inflow—up to +25% year-
over-year [3]—congestion is set to worsen as urbanization
continues. To address this challenge, traffic control systems
have evolved from traditional handcrafted rules and actuated
systems to Adaptive Traffic Signal Control (ATSC). Driven
by cost-effectiveness [4], [5], increasing availability of traffic
data [6], and advances in optimization techniques [7], ATSC
has become a central focus of intelligent transportation sys-
tems research [8]. While ATSC has reduced congestion and
improved vehicular flow, its evolution has largely overlooked
a critical stakeholder: pedestrians.

At the same time, pedestrian fatalities in the U.S. have
reached their highest level in 41 years, averaging about
21 deaths per day [9], [10]. Urban areas are particularly
affected, with 84% of these fatalities occurring in cities and
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76% taking place at non-intersection locations such as mid-
block crossings and commercial strips [11]. A key factor
is the prevalence of unsignalized mid-block crosswalks,
where pedestrians lack clear guidance and drivers may not
yield, increasing accident risks [12]. Implementing signalized
crosswalks at these locations—with dedicated pedestrian
phases and clear right-of-way signals—has proven effec-
tive in reducing vehicle-pedestrian conflicts and enhancing
rule compliance [13]. The inclusion of pedestrian-friendly
features in ATSC frameworks ensures that traffic control
systems not only alleviate congestion but also proactively
protect vulnerable road users.

As urban traffic control grows increasingly complex,
ATSC strategies are leveraging real-time sensor data and
computational methods. RL, in particular, has emerged as a
leading approach due to its ability to learn adaptive policies
directly from data without relying on traffic models or
handcrafted rules. Recent methods have primarily focused on
improving vehicular throughput, often neglecting pedestrian
efficiency or modeling pedestrian behavior in overly simpli-
fied scenarios [14]–[16]. This vehicle-centric approach fails
to capture the complex interactions between vehicles and
pedestrians, especially in urban environments characterized
by high pedestrian volumes, frequent mid-block crossings,
and diverse mobility demands. Developing control policies
that simultaneously optimize pedestrian and vehicular effi-
ciency in realistic urban settings remains an open challenge.

This paper introduces a deep RL framework for corridor-
level control of eight traffic signals, jointly optimizing for
vehicular and pedestrian efficiency. Our contributions are:

• We develop a single policy that effectively manages
high traffic volumes (up to 6, 000 pedestrians/hr and 558
vehicles/hr) based on real-world demand data derived
from Wi-Fi logs and video analysis.

• Our results demonstrate substantial performance im-
provements over traditional fixed-time signals, reducing
average wait time per vehicle by up to 52% and average
wait time per pedestrian by up to 67%.

• We provide insights into the behaviors learned by our
policy, including coordination of multiple signals to
create a “green wave” effect, and responsiveness to real-
time traffic by switching phases more frequently.

The code, data, and video demonstrations are available in
GitHub repository: github.com/poudel-bibek/Urban-Control.

II. RELATED WORK

Conventional adaptive traffic control systems have evolved
through two primary approaches: model-based methods like

https://github.com/poudel-bibek/Urban-Control


Fig. 1: The Craver Road corridor with an intersection (INT) that contains one primary traffic signal and four signalized crosswalks, along
with seven midblock signalized crosswalks (MB1–MB7) that control pedestrian–vehicle interactions.

SCOOT [17], which leverage macroscopic traffic flow equa-
tions to optimize signal timings, and rule-based systems
such as SCATS [18], which select from a library of timing
plans in response to detected traffic. Despite their widespread
deployment and clear advantages over fixed-time control,
these systems struggle to capture the inherent complexity and
stochasticity of urban traffic. Common challenges include
unpredictable variations in traffic volume and queue prop-
agation through multiple intersections in the network [19].
To address these challenges, modern traffic control strategies
harness real-time sensor data alongside advanced computa-
tional techniques—including machine learning [20], [21] and
deep reinforcement learning (DRL) [22], [23]—effectively
eliminating the need for explicit rules or pre-defined models.

In particular, DRL has emerged at the forefront of modern
traffic control research, demonstrating its effectiveness in
both single-agent and multi-agent settings [24], [25]. In
single-agent settings, DRL has been applied to optimize iso-
lated intersections by selecting appropriate signal phases [26]
or duration [27] based on observed traffic conditions, while
multi-agent scenarios explore approaches where agents either
collaborate to coordinate signals across networks [28] or
compete to prioritize movement in traffic signal with higher
demand [15]. These methods generally show better per-
formance compared to fixed-time and conventional control
approaches [29], demonstrating, for instance, reductions in
average travel time and queue lengths [30]. Yet, it is worth
noting that majority of existing studies remain primarily
focused on optimizing vehicular throughput [16].

However, real-world urban environments include both ve-
hicles and pedestrians. Integrating pedestrian dynamics into
ATSC systems introduces several complex challenges—such
as ensuring pedestrian safety at crosswalks [14], [31] and
balancing the needs of both vehicles and pedestrians to
prevent excessive delays for one group while prioritiz-
ing the other [32]. Recognizing these complexities, recent
studies have extended RL-based traffic signal control to
incorporate pedestrians. Several approaches have emerged
in this direction: some introduce pedestrian-specific phases
i.e., eliminate vehicle-pedestrian interactions for improved
safety [33], while others incorporate pedestrian-centric per-
formance metrics directly into the reward function [34].
However, these studies typically rely on synthetic demand
data or remain constrained to ideal road-networks [8]. This
leaves pedestrian-inclusive ATSC strategies relatively un-

derexplored, particularly for complex urban corridors with
multiple signalized crosswalks.

Our work addresses these limitations by proposing a DRL
framework that jointly optimizes vehicular and pedestrian
waiting times in a real-world corridor-level setting. Unlike
earlier methods that either focused solely on vehicles or used
synthetic demand on ideal networks, our approach employs
a real-world urban network of eight traffic signals with real-
world demand data for both vehicles and pedestrians. The
work most similar to ours is Kumarasamy et al. [35], which
also uses a real-world corridor and vehicle demand data
but differs by adopting a multi-agent framework and relying
on synthetic pedestrian demand. Our approach demonstrates
that a single-agent policy can effectively control an entire
urban corridor while balancing the needs of both vehicles
and pedestrians.

III. METHODOLOGY

A. Real-World Network and Demand Data

The Craver Road, as shown in Figure 1, is a 750m corridor
that serves as the primary arterial through the University of
North Carolina, Charlotte’s main campus. The campus covers
1.56 square miles and includes 85 buildings and approxi-
mately 34, 000 students, faculty, and staff [36]. To capture
pedestrian demand data, we utilize Wi-Fi logs collected in
September 2021 by the university’s IT department. The Wi-Fi
network comprises of 2, 492 access points (APs) distributed
across 82 buildings, with 88, 409 unique clients. The Wi-
Fi log data captures communication events between Wi-Fi
clients (e.g., smartphones and laptops) and APs. Each log en-
try indicates “when” (timestamp) and “where” (AP location)
each client connected to the network. We processed this raw
data using a generalized Wi-Fi processing framework based
on a “Point-Line-Plane” hierarchical concept [37] with the
following filtering assumptions:

• Client activities were aggregated at the building level,
each client’s AP sessions within the same building were
merged to represent presence in that location.

• Clients identified as visitors or irregular commuters (de-
tected for fewer than three days per month, constituting
11.81% of the dataset) were excluded, as our analysis
focuses on typical campus travel patterns.

• To address individuals carrying multiple devices, we
used K-means clustering to classify and remove “non-



Fig. 2: (a) Deep reinforcement learning framework for corridor-level traffic control. (b) Intersection signal configurations controlling
vehicle and pedestrian movements, including dedicated left turns (choice 3) and all-pedestrian phases (choice 4). (c) Two midblock signal
configurations allowing either vehicle movement (choice 1) or pedestrian crossing (choice 2).

mobile” devices based on the mean and variance of their
stationary ratio relative to total daily activity time [38].

For vehicle demand data, we analyzed four video recordings
(total 21 minutes) captured at different times at the Craver
Road intersection (INT). The observed flow was converted to
hourly rates, resulting in an average headway of 18 seconds
between vehicles. We mapped both pedestrian and vehicle
demand to SUMO [39] trip definitions, creating a network-
wide real-world demand of 2223 pedestrians/hr and 202
vehicles/hr. For trip generation, we defined origin-destination
pairs using Traffic Analysis Zones (TAZs). Pedestrian origin-
destination pairs were derived from Wi-Fi building visit data,
and vehicle pairs from movement records. In each trip, start
and end points were assigned to specific edges within TAZs,
with departure times based on observed timestamps.

B. Markov Decision Process

We formulate the Adaptive Traffic Signal Control (ATSC)
as a sequential decision-making problem modeled as a par-
tially observable Markov Decision Process represented by
the tuple (S,A, T,R,Ω, O, γ). Here, S denotes the set of
environment states, A represents the set of possible actions,
T : S × A × S → [0, 1] is the probabilistic state transition
function, and R : S × A → R defines the reward function.
Due to partial observability in real-world traffic systems, Ω
represents the set of observations, O : S × A × Ω → [0, 1]
defines the observation probability function, and γ ∈ [0, 1) is
the discount factor to balance immediate and future rewards.

State: Traffic representation significantly impacts ATSC
performance [40]. Our observation fuses vehicle and pedes-
trian occupancy data in areas neighboring each traffic signal,
vehicles are detected within a 15–100m vicinity while pedes-
trians are detected within 5–10m. To capture both spatial and
temporal dynamics, we stack occupancy information over the
action duration (each action step encompasses N simulation
timesteps). At action step t, the observation ot ∈ Ω is formed
by stacking N vectors from the previous action interval:

ot = [v1, v2, . . . , vN ] , with

vk =
[
ϕt−1, {vi,·(k)}Mi=1, {pi,·(k)}Mi=1

]
,

for k = 1, 2, . . . , N , where:

• ϕt−1 is the signal phase during the previous action,
• vi,·(k) =

(
vi,in(k), vi,inside(k), vi,out(k)

)
denotes the

vehicle occupancy vector at traffic signal i at the k-th
simulation timestep; here, vi,in(k) represents occupancy
from lanes approaching the traffic signal (incoming),
vi,inside(k) from lanes within the controlled area, and
vi,out(k) from lanes exiting (outgoing),

• pi,·(k) =
(
pi,in(k), pi,out(k)

)
denotes the pedestrian

occupancy vector at traffic signal i at the k-th simula-
tion timestep; here, pi,in(k) represents occupancy from
pedestrians approaching the crosswalk, and pi,out(k)
from those leaving,

• M is the number of controlled traffic signals.
This spatio-temporal formulation provides a comprehensive
snapshot of evolving traffic conditions.

Action: The agent’s action is composed of two indepen-
dent components—intersection and mid-block actions—both
derived from a policy parameterized by θ ∈ Rd, which takes
as input the current observation ot to produce logits that are
split into distribution parameters for the two actions:

• Intersection Action: The agent selects one of four
mutually exclusive phase configurations as shown in
Figure 2 (b), i.e., aintt ∈ {1, 2, 3, 4}, with j denoting
the chosen configuration. This selection is drawn from
a Categorical distribution:

P (aintt = j | ot, θ) = Categorical
(
j;pint(ot, θ)

)
,

where pint(ot, θ) ∈ ∆3 is the probability vector over
the four phase configurations.

• Mid-Block Actions: For each of the seven mid-block
signals, the agent independently selects a binary action
amb
t,i ∈ {1, 2}, each modeled as a Bernoulli distribution:

P (amb
t,i = b | ot, θ) = Bernoulli

(
b;µmb

i (ot, θ)
)
,

where µmb
i (ot, θ) is the probability for signal i and b =

1 indicates permission for vehicle flow i.e., Midblock
choice 1 shown in Figure 2 (c).

The overall action at = concat(aintt , amb
t,1 , . . . , a

mb
t,7 ) is

an 8-digit string. Restricting the intersection action to pre-
defined safe configurations inherently enforces safety (pre-
venting conflicting pedestrian–vehicle greens) and reduces



the exploration space for more sample-efficient learning. For
additional safety, a 4-timestep mandatory yellow phase is
automatically introduced in all the signals via an internal
mechanism before switching from a green to a red signal.
Note that while direct control over the yellow phase duration
is not permitted, the duration of any other phase can be
controlled by repeatedly selecting the same action. Each
action lasts for 10 simulation steps (N = 10).

Reward: To fulfill the multi-objective goal of minimiz-
ing both vehicle and pedestrian waiting times, we build
on the success of the Maximum Wait Aggregated Queue
(MWAQ) [41], and propose the Exponentially Increas-
ing Maximum Wait Aggregated Queue (EI-MWAQ). While
MWAQ uses the product of queue length and maximum wait-
ing time to approximate the worst-case aggregate delay, EI-
MWAQ normalizes those values and applies an exponential
penalty. This strongly disincentivizes large queues and long
waits. For the intersection, we compute:

Qint
veh =

N int
veh ·W int

veh

8|D|
, Qint

ped =
N int

ped ·W int
ped

10|D|
,

where N int
veh and N int

ped denote the counts of waiting vehicles
and pedestrians at the intersection, W int

veh and W int
ped their

respective maximum waiting times, and |D| the number
of incoming directions. For each midblock signal i, we
compute:

Qmb
veh(i) =

Nmb
veh(i) ·Wmb

veh(i)

8|Dmb|
,

Qmb
ped(i) =

Nmb
ped(i) ·Wmb

ped(i)

10
,

where |Dmb| is the number of incoming directions. These
per-signal values are aggregated across all 7 midblock signals
using the L2 norm:

Qmb
veh =

∥∥∥(Qmb
veh(i)

)7
i=1

∥∥∥
2
, Qmb

ped =
∥∥∥(Qmb

ped(i)
)7
i=1

∥∥∥
2
.

The amplified penalties are obtained by applying the expo-
nential function:

Rint
veh = exp

(
Qint

veh

)
, Rint

ped = exp
(
Qint

ped

)
,

Rmb
veh = exp

(
Qmb

veh

)
, Rmb

ped = exp
(
Qmb

ped

)
.

The final reward is given by:

R = −
(
Rint

veh +Rint
ped +Rmb

veh +Rmb
ped

)
,

which is clipped within the range [−105, 0] for numeri-
cal stability. Vehicles are considered waiting below speed
0.2m/s and pedestrians below speed 0.5m/s and the nor-
malization constants 8 and 10 are empirically chosen. Ad-
ditionally, both the state and reward statistics are updated at
each action step using a Welford Normalizer [42], [43].

IV. EXPERIMENTS

A. Setup

We conduct all simulations using SUMO [44]. The re-
inforcement learning policy is trained using Proximal Pol-
icy Optimization (PPO) [45] with Generalized Advantage

Category Parameter Value

PPO

Learning Rate (α) 1×10−4

Discount Factor (γ) 0.99

GAE Estimation (λ) 0.95

Clip Parameter (ϵ) 0.2

Value Function Coeff. 0.5

Update Frequency 1024

K-epochs 4

Policy
Architecture MLP
Hidden Layers (Actor) [512, 256, 128, 64, 32]

Hidden Layers (Critic) [512, 256, 128, 64, 32]

Simulation

Time Step (∆t) 1 second
Action Duration 10 steps
Warmup Time-steps 100-250
Episode Horizon 600 steps

TABLE I: Key parameters for PPO, policy, and simulation.

Estimation (GAE) [46]. Training occurs across 24 parallel
actors over 6 × 106 simulation timesteps on an Intel Core
i9− 14900KF processor and an NVIDIA RTX A5000 GPU.
We implement a multi-layer perceptron policy architecture
with separate networks for actor and critic. During training,
each episode consists of a warmup period (randomly selected
between 100 and 250 timesteps) during which all signals
operate on fixed-time control, followed by a 600-timestep
episode horizon. To ensure robust policy learning, we ran-
domly scale both pedestrian and vehicle demand between 1×
and 2.25× the original demand for each episode. SUMO’s
dynamic routing behavior introduces additional variability
by adapting vehicle and pedestrian routes based on current
traffic conditions. A comprehensive list of simulation and
training parameters is provided in Table I.

B. Benchmarks

We evaluate our approach against two traffic control strate-
gies that represent common real-world implementations.

1) Unsignalized: In this benchmark, we implement all
mid-block locations (MB1-MB7) as unsignalized crosswalks,
closely matching the current real-world setup of the corridor.
At these unsignalized crosswalks, pedestrians have the right-
of-way as specified by the Uniform Vehicle Code [47]. This
right-of-way behavior is implemented in our simulation using
SUMO’s pedestrian interaction model [48], where vehicles
must yield to pedestrians in two specific scenarios:

• Vehicles and pedestrians share the same road
• Vehicles pass through designated pedestrian crossings

The unsignalized approach represents a pedestrian-prioritized
baseline that minimizes pedestrian delay at mid-block loca-
tions but may increase vehicle delay and conflicts (right-
of-way negotiations) between vehicles and pedestrians. As
shown in Figure 4(a), the conflicts become increasingly crit-
ical at higher traffic volumes, where unsignalized crosswalks
experience up to 28.1 conflicts on average. The intersection
(INT) remains signalized.
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Fig. 3: Performance comparison between three traffic control approaches across varying demand scales. The figure shows wait times
for both pedestrians (left) and vehicles (right), measured as average wait time per pedestrian/vehicle (top) and total wait time for
pedestrians/vehicles (bottom). Our RL agent consistently outperforms traffic signal control (Signalized) across all demand levels, reducing
average vehicle wait times by up to 52% (from 42.6 to 20.5 seconds per vehicle at 2× demand) while decreasing pedestrian wait times
by up to 67% (from 6.0 to 2.0 seconds per pedestrian at 2× demand). Despite providing protected crossing phases through signalization,
our RL approach achieves pedestrian wait times comparable to or slightly better than unsignalizing mid-block crosswalks (Unsignalized),
while delivering approximately 20% lower average vehicle wait times at higher demands. The gray-shaded areas to the left and right
indicate demand levels unseen during training (< 1× and > 2.25×), where our approach generalizes effectively with consistent performance
improvements across both low and high demands. All values are averaged across 10 independent simulation runs with a total of 600 runs.

2) Signalized: This benchmark implements fixed-time
control for both the intersection (INT) and mid-block (MB1-
MB7) crosswalks. The signal timings are based on real-world
observations and standard traffic engineering practices:

INT: Operates on a 5-phase cycle with 90-second green
periods alternating between N-S and E-W through vehicle
movements. Each direction change includes a 4-second yel-
low and 2-second all-red transition period. Consistent with
the real-world implementation, the signal timing does not in-
clude dedicated left-turn phases. Complementary pedestrian
crossings activate simultaneously with their corresponding
vehicle phases (i.e., when N-S vehicle movement is green,
the E-W pedestrian crosswalks are also green, and vice
versa). We derived these timings through manual observation
of video footage captured at different times of day.

MB1-MB7: Operate on a 62-second cycle with phases set
according to guidelines from FHWA’s Manual on Uniform
Traffic Control Devices (MUTCD) [49] and Traffic Signal
Timing Manual (TSTM) [50]:

• Pedestrian Phase (MUTCD 4I.06): 16 seconds consist-
ing of a 7-second minimum interval followed by a 9-
second clearance interval calculated as:

Clearance time =
Crosswalk length

Walking speed
=

32 ft
3.5 ft/s

≈ 9 s

• Vehicle Phase (TSTM 6.6.3, MUTCD 4F.17): 46 sec-
onds consisting of 40-second green time (64% of the
split distribution), a 4-second yellow change interval,
and a 2-second red clearance interval.

The signalized approach represents a fully-controlled
safety-oriented baseline with dedicated signal phases en-
suring rule compliance and eliminating vehicle-pedestrian
right-of-way conflicts. Our RL approach also uses the fully-
controlled setup but replaces the fixed signal timing cycles
with adaptive timings controlled by the policy.

C. Results

Our reinforcement learning (RL) based approach effec-
tively resolves the safety-efficiency trade-off in traffic control
by providing the safety benefits of signalized crossings
while achieving wait times comparable to or better than
unsignalized crossings. As shown in Figure 3, the approach
consistently outperforms Signalized across all demand levels,
reducing average vehicle wait times by up to 52% and
pedestrian wait times by up to 67%. The approach also
demonstrates strong generalization capabilities, maintaining
these performance advantages at both low (0.5x, 0.75x) and
high (2.5x, 2.75x) demands that were unseen during training.

Pedestrian Wait Times. At 1x demand, our approach
achieves an average wait time per pedestrian of 2.1 seconds
compared to 5.9 seconds for Signalized and 2.1 seconds
for Unsignalized. This represents a 65% reduction compared
to Signalized while matching Unsignalized. As demand in-
creases, our approach maintains its efficiency: at 2x demand,
2.0 seconds versus 6.0 seconds for Signalized (67% reduc-
tion) and 2.2 seconds for Unsignalized. The total pedestrian
wait time shows a similar pattern (upto 67% reduction), with
our approach consistently outperforming both Signalized and



Fig. 4: (a) Vehicle-pedestrian right-of-way conflicts in unsignalized mid-block crosswalks increase substantially with traffic demand,
from 1.8 conflicts at 0.5x demand to 28.1 at 2.5x demand. The error bars show standard deviation values rising at higher demand
levels, indicating safety outcomes become both worse and more unpredictable as traffic volumes increase. (b) Emergence of traffic signal
coordination during training. Average number of mid-block traffic lights simultaneously set to green for vehicular flow shows an upward
trend (from approximately 3.55 to 3.75) indicating that the RL agent gradually learns to coordinate multiple signals. (c) Total signal phase
switches after the warmup period across all signals in the network. RL agent demonstrates adaptive switching, with more than five fold
increase in switching frequency compared to fixed-time signalized control. Plots (a) and (c) data are averaged over 10 runs.

Unsignalized across the demands.
Vehicle Wait Times. At 1x demand, our approach

achieves an average wait time per vehicle of 20.8 seconds
compared to 31.3 seconds for Signalized and 20.7 seconds
for Unsignalized. This represents a 34% reduction compared
to Signalized while maintaining comparable performance to
Unsignalized. This pattern continues at higher demands: at
2x demand, 20.5 seconds versus 42.6 seconds for Signalized
(52% reduction) and 25.9 seconds for Unsignalized. The total
accumulated vehicle wait time at 2x demand shows similar
improvements: 1.16 hours for Signalized, 0.55 hours for our
approach, and 0.56 hours for Unsignalized.

Generalization to Unseen Demands. As shown in the
shaded (gray) regions of Figure 3, our approach maintains
consistent performance advantages for both pedestrians and
vehicles at both low demand (up to 0.5x) and high demand
(up to 2.75x), reducing wait times by up to 67% for pedes-
trians and up to 39% for vehicles.
To understand the observed wait time reductions, we examine
the internal behaviors of our policy and identify two emer-
gent phenomena that explain its advantage over baselines:

Signal Coordination. Our policy autonomously learns to
coordinate mid-block crosswalks, similar to the “green wave”
effect observed in other RL traffic systems [51], [52]. The
action space models each mid-block signal independently
using Bernoulli distribution (as described in Section III),
with no built-in mechanism for coordination. Yet as shown
in Figure 4(b), the RL agent learns to increase the number of
mid-block traffic signals simultaneously set to vehicle green
phase. The trend line shows this coordination improve from
approximately 3.55 to 3.75 synchronized green signals over
the course of training—a significant shift when considering
each data point represents an average over 1440 actions taken
across 24 parallel actors. The coordination of signal timing
reduces the number of stops and enables more efficient
vehicular flow through the corridor.

Adaptive Switching Frequency. As shown in Figure 4(c),

our policy exhibits more than five fold increase in switching
frequency with an average of 284 switches compared to 54
in signalized control. Additionally, the policy demonstrates
adaptability across different demand scales, with standard
deviations ranging from 9.23 (at 2.5x demand) to 16.42
(at 2.0x demand). Despite the policy not being explicitly
incentivized to switch more (or less) often in the reward, it
learned that demand-responsive and generally more frequent
switching enables the system to minimize waiting times.

V. CONCLUSION AND FUTURE WORK

In this work, we introduced a deep reinforcement learning
framework for corridor-level adaptive traffic signal control
that jointly optimizes for pedestrian and vehicular efficiency.
We applied this framework to a real-world urban network
using real-world pedestrian and vehicle demand data. Our
trained policy reduces wait times significantly for both
pedestrians (up to 67%) and vehicles (up to 52%) compared
to traditional fixed-time signals, while generalizing to both
lower and higher traffic volumes not seen during training.

Under high demands, qualitative analysis of the rollouts
reveal the propagation of vehicle queues upstream, when
signals are located close to each other (back-spill effect).
This may have resulted from our modeling assumption that
each signal operates independently. Future work could ex-
plicitly incorporate correlations between adjacent signals to
address this limitation. Additional future research directions
could incorporate mixed-traffic control [53], [54], adversarial
robustness evaluation [55], and effect of real-world traffic
disruptions [56], [57].
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