
Latent Representation of Input: A Defense
Against Adversarial Examples in Deep Q Networks

Bibek Poudel 1

Abstract
Similar to models in Computer Vision and Nat-
ural Language Processing, Deep Reinforcement
Learning (DRL) policies are also known to be
vulnerable to adversarial examples. This presents
serious concerns about widespread adoption of
such policies in safety critical applications. In
this work, we adopt techniques from image clas-
sification namely, latent representation of inputs,
more specifically, feature squeezing, to nullify the
effects of the modifications in observations caused
by a white-box adversary. We modify the input
processing pipeline such that the agent is success-
fully able to choose correct actions even when
the observations are perturbed. (See Appendix for
videos).

1. Introduction
Reinforcement Learning (RL) has achieved superhuman per-
formance in recent years in control and manipulation tasks
that often require long-term planning, such as autonomous
driving and Atari games. These advancements rely on RL
policies capable of learning directly from observations to
produce a distribution over actions to take. Such policies are
often parameterized by neural networks (Riedmiller, 2005).

The threat of adversarial examples (Szegedy et al., 2013)
to neural networks has been widely studied in the context
of Machine Learning (ML) classifiers in images and lan-
guage. Adversarial examples have been shown to degrade
the test-time performance of these classifiers. More recently,
they have also been demonstrated to degrade the test-time
performance of trained Reinforcement Learning (RL) poli-
cies (Huang et al., 2017), i.e., an adversary can stealthily
modify the observations and cause a trained policy to take
incorrect actions. It is essential to address the threats that
adversarial examples pose before the widespread adoption
of RL policies in critical tasks.

Although there has been a significant amount of work in
crafting adversarial attacks on RL, the number of defenses

Reinforcement Learning class project, fall 2021 1University of
Memphis. Correspondence to: <bpoudel@memphis.edu>.

thus far is sparse. In this work, we apply the latent repre-
sentation (feature squeezing by bit depth reduction) of input
observations (Xu et al., 2017) and embed this as a function
block in the input processing pipeline of a trained policy
to defend the policy against adversarial attacks. This is an
application of existing techniques from the image classifi-
cation domain, where an adversarial example detector was
built using this technique, to RL and more specifically to
Deep Q Networks (DQN).

We successfully demonstrate that this technique can defend
against an adversarial attack crafted using the Fast Gradient
Sign Method (FGSM) on a DQN agent trained to play Pong
in the Arcade Learning Environment (ALE) (Bellemare
et al., 2013).

2. Related Work
In this section, we first introduce existing work on adver-
sarial examples in RL, then we discuss the use of feature
squeezing as a defense against adversarial examples in im-
age classification.

2.1. Adversarial examples in Reinforcement Learning

The vulnerability of Reinforcement Learning to adversarial
examples was first exposed by Huang et al.(Huang et al.,
2017), where they discovered that adversarial examples
can cause a significant drop in the performance of poli-
cies trained using state-of-the-art algorithms, such as Deep
Q Networks (DQN), Trust Region Policy Optimization
(TRPO), and Asynchronous Actor Critic (A3C). They per-
formed their experiments in both white-box and black-box
scenarios to further show that adversarial examples crafted
for one algorithm can transfer to another algorithm as well.
Other attack techniques such as the ”Strategically timed
attack”(Lin et al., 2017), where adversarial examples are
crafted only for certain time steps independent of all other
time steps, have been developed since then. More recently,
adversarial examples have also been crafted for automatic
path planning tasks (Liu et al., 2017), (Bai et al., 2018).

Although defense techniques like Adversarial training and
Defensive distillation have been widely used and validated
for image classification, they have not been widely adopted



Latent Representation of Input: A Defense Against Adversarial Examples in Deep Q Networks

Figure 1. Architecture of the DQN. The input observation of four stacked 84 × 84 pixels is passed through Convolutional layers and
Linear layers before mapping them to Q values for the six actions to be performed.

for adversarial examples in RL (Chen et al., 2019). Tradi-
tionally, there have been two techniques to defend against
adversarial examples: one is to build a detector for adversar-
ial examples, and the other is to use techniques to make it
harder to construct adversarial examples (usually by modi-
fying the objective function). In this work, we use neither
of these techniques. Instead, we add a defensive functional
block that can enable the trained agent to make correct deci-
sions in the presence of an adversary.

2.2. Feature squeezing in image classification

Feature squeezing was proposed as a detector of adversarial
examples by Xu et al. (Xu et al., 2017), where they compare
the prediction of a DNN on a regular input as well as the
feature squeezed input. The given input is detected as an
adversarial example if the difference in the prediction vector,
as measured by the L1 distance between the prediction on
the regular input and the prediction on the feature squeezed
input, is above a predefined threshold. The techniques used
by the authors for feature squeezing are bit depth reduc-
tion and spatial smoothing, and they validated this to be
an effective defense technique against adversarial examples
crafted using seven different techniques. Although feature
squeezing has been used in image classification to detect
adversarial examples, it has not been used in RL to robustify
a trained model.

3. Preliminaries
In this section, we briefly introduce the policy learning algo-
rithm that was attacked, the concept of adversarial attacks,
the algorithm used to generate adversarial examples, and
the defense technique.

3.1. Deep Q Networks (DQN)

Introduced in (Mnih et al., 2013) as a variant of the Q learn-
ing algorithm, DQN is a generalized approximation of the Q
function that achieved state-of-the-art performance in Atari

Figure 2. Feature squeezing by pixel bit depth reduction. The input
observation typically represented by 8-bit pixels, i.e., 256 levels,
is reduced to 4-bit pixels, i.e., 16 levels.

2600 games from the Arcade Learning Environment. Dur-
ing training, DQN learns to map the raw observations (input
pixels) to the distribution of actions to take. Once trained, a
policy is obtained that can select the optimal action given
an observation. One of the games where it achieved super-
human performance was Pong.

The architecture of the DQN, which is trained to play Pong
and craft adversarial examples in this work, is shown in
Fig. 1. Here, the input is a stack of four 84 × 84 pixels
which is passed through different layers (Convolutional,
Activations, Linear) and finally mapped to the Q values
of the six actions to take, namely: FIRE, NOOP, RIGHT,
RIGHTFIRE, LEFT, and LEFTFIRE. Finally, the action
taken is the one with the highest Q value, and the policy that
is learned is obtained by greedily taking the action with the
highest Q value for each observation.

3.2. Adversarial Attack

An adversarial attack on a deep neural network (f) is con-
ducted through crafting an adversarial signal (x∗) by im-
posing minimal perturbation (δx) to the original signal (x).
The perturbed signal (x∗) can be obtained via solving the



Latent Representation of Input: A Defense Against Adversarial Examples in Deep Q Networks

Figure 3. Systematic diagram of the attack and defense. An adversarial example is generated from the observation obtained from the
environment, which is then defended before it is fed as input to the trained DQN.

following optimization problem (Szegedy et al., 2013):

minimize D(x,x+δx)
s.t. f(x) ̸= f(x∗),

(1)

where D is a distance metric such as L0, L2, or L∞. Mul-
tiple methods can be used to solve Eq. 1, one of them is
the Fast Gradient Sign Method (FGSM) (Goodfellow et al.,
2014). FGSM is designed to produce an adversarial signal
in a fast, non-iterative manner. It computes the gradient of
the cost function J with respect to input x and scales the
sign of the gradient by an L∞ constraint to generate δx:

x∗ = x+ε·sign (∇xJ (θ,x “‘latex(2)

where θ represents the parameters of f ; y is the target;
and ε is the L∞ constraint parameter controlling the attack
magnitude. Increasing the value of ε will increase the attack
effectiveness but also make the adversarial example more
distinguishable (i.e., having a large δx).

3.3. Feature Squeezing using bit depth reduction

Although neural networks (differentiable models) assume
the inputs to them to be continuous, typically, images are
quantized to 8-bit representations in digital form, i.e., pixels
in each channel have 256 levels leading to 24-bit color in
the RGB scheme and 8-bit color in the Grayscale scheme.
Xu et. al. (Xu et al., 2017) first hypothesized that reducing
the color depth of the input representations can reduce the
opportunity for an adversary to cause harm without affecting
the classifier.

As shown in Fig. 2, feature squeezing coalesces a number
of similar inputs into a single one, reducing the high di-
mensional space of input to its latent representation. Since
adversarial examples work by adding fine details to a given

input, in this work, the reduction in pixel depth is expected
to eliminate its effects.

4. Methodology
The defense is implemented against a non-adaptive white-
box adversary, i.e., one who knows everything about the
model but not the defense technique that is being imple-
mented. The goal of the adversary is to modify the observa-
tion to cause a trained model to produce an incorrect action,
whereas the goal of the defense is to eliminate the effects of
changes produced by the adversary, i.e., to make the agent
take the correct action in the presence of the adversary.

4.1. Training DQN

The reward in the game of Pong is defined as +1 if a round
of the game is won and −1 if a round of the game is lost.
Each episode is composed of 21 rounds, i.e., any player
can get a maximum reward of +21 and a minimum reward
of −21. The DQN is trained with experience replay fol-
lowing the algorithm given in (Mnih et al., 2013). As a
pre-processing step, to reduce the computational load, the
input observation obtained from the ALE, which contains
RGB frames of size 210 × 160, is grayscaled, cropped to
the relevant area of the frame, and resized to 84× 84.

Other training hyperparameters are: discount factor = 0.99,
learning rate = 10−4, batch size = 32, replay buffer size
= 10000 transactions, optimizer = Adam (Kingma & Ba,
2014), loss = Mean Squared Error (MSE). Further, the
agent starts training with a 100% probability of exploration,
which gradually decays to a minimum of 2% probability of
exploration as it achieves better performance. The training
is terminated when the mean reward of the last 21 games is
+19.



Latent Representation of Input: A Defense Against Adversarial Examples in Deep Q Networks

Figure 4. Defense mechanism embedded in the input processing pipeline. The ’Latent Representation’ functional block performs the
feature squeezing step on observations that were perturbed by the adversary.

4.2. Generating Adversarial Examples for trained DQN

The white-box adversary has access to the input processing
pipeline as shown in Fig. 3. Adversarial examples are gen-
erated using FGSM for each preprocessed frame obtained
from the environment. The perceptibility value is set to
0.003 and the loss function maximized by the adversary is
MSE. When perturbations are added to the observation, to a
human observer, the two images are indistinguishable.

4.3. Using Feature squeezing as a defense

Feature squeezing by color bit depth reduction is applied
to image frames perturbed by the adversary. The defense
mechanism is represented as the ’Latent Representation’
block, which is embedded in the input processing pipeline
of the DQN as shown in Fig. 4. The latent representation es-
sentially works as a filter that prevents the tiny perturbations
from being processed at the input.

5. Experiments
In this section, we first describe the experiment setup, then
present and discuss the experiment results. All experiments
are conducted using an Intel(R) Core(TM) i7-10700 CPU,
an Nvidia RTX 2080 SUPER GPU, and 32G RAM. Py-
Torch (Paszke et al., 2017) is used to implement the DQN
and Advertorch (Ding et al., 2019) is used to generate ad-
versarial examples.

After training the DQN until it met the convergence criteria
defined in Section 4, it was run for a total of 20 episodes.
The average reward collected by the agent is given in Table 1.
The agent can take correct actions for almost all the rounds
of games in every episode.

Following the performance on standard observations, ad-
versarial perturbations were added to the input observation

Number of Episodes Average Reward
20 +19.75

Table 1. Performance of a trained DQN on standard observations.
As seen from the reward, the agent wins almost all rounds of the
game in every episode.

Number of Episodes Average Reward
20 -21

Table 2. Performance of a trained DQN on adversarial observations.
The agent loses all rounds in every episode of the game it plays.

Number of Episodes Average Reward
20 +21

Table 3. Performance of a trained DQN in the presence of a ’Latent
representation’ functional block. The average reward obtained per
episode is similar to that with standard inputs.

frames to generate modified observations, as shown in Fig. 4.
Table 2 shows the performance of the trained DQN on mod-
ified (adversarial) observations. The adversary can signifi-
cantly degrade the performance of the trained agent, causing
it to lose every round of the game in every episode.

The modified observations from the adversary are then
passed to a functional block where the input features are
squeezed to 4-bit pixel depth reduction before being passed
as observations to the DQN, which was trained on 8-bit ob-
servations. Table 3 shows the performance of the DQN on
these defended inputs. Despite the presence of an adversary,
the agent can perform well enough to win almost all rounds
of the game in every episode.



Latent Representation of Input: A Defense Against Adversarial Examples in Deep Q Networks

6. Conclusion and Future Work
In this work, we embedded a functional block into the input
processing pipeline of a DQN. This block performs the la-
tent representation of the input and acts as a filter to nullify
the effects of a white-box adversary. Please refer to Sec-
tion A for videos demonstrating the performance. In the
future, we plan to use latent representation techniques other
than feature squeezing, such as Autoencoders, to address
the same problem. Additionally, we plan to explore other
problems as well.

References
Bai, X., Niu, W., Liu, J., Gao, X., Xiang, Y., and Liu,

J. Adversarial examples construction towards white-box
q table variation in dqn pathfinding training. In 2018
IEEE Third International Conference on Data Science in
Cyberspace (DSC), pp. 781–787. IEEE, 2018.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Chen, T., Liu, J., Xiang, Y., Niu, W., Tong, E., and Han, Z.
Adversarial attack and defense in reinforcement learning-
from ai security view. Cybersecurity, 2(1):1–22, 2019.

Ding, G. W., Wang, L., and Jin, X. AdverTorch v0.1: An
adversarial robustness toolbox based on pytorch. arXiv
preprint arXiv:1902.07623, 2019.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

Huang, S., Papernot, N., Goodfellow, I., Duan, Y., and
Abbeel, P. Adversarial attacks on neural network policies.
arXiv preprint arXiv:1702.02284, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Lin, Y.-C., Hong, Z.-W., Liao, Y.-H., Shih, M.-L., Liu,
M.-Y., and Sun, M. Tactics of adversarial attack on
deep reinforcement learning agents. arXiv preprint
arXiv:1703.06748, 2017.

Liu, J., Niu, W., Liu, J., Zhao, J., Chen, T., Yang, Y., Xiang,
Y., and Han, L. A method to effectively detect vulnerabil-
ities on path planning of vin. In International Conference
on Information and Communications Security, pp. 374–
384. Springer, 2017.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Riedmiller, M. Neural fitted q iteration–first experiences
with a data efficient neural reinforcement learning method.
In European Conference on Machine Learning, pp. 317–
328. Springer, 2005.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

Xu, W., Evans, D., and Qi, Y. Feature squeezing: Detecting
adversarial examples in deep neural networks. arXiv
preprint arXiv:1704.01155, 2017.



Latent Representation of Input: A Defense Against Adversarial Examples in Deep Q Networks

A. Appendix A
Click on the items below for videos at various stages of
input and the DQN performance:

• Standard and pre-processed inputs

• Performance of trained DQN on standard inputs

• Performance of trained DQN on inputs perturbed by
adversary

• Performance of trained DQN on defended inputs

https://youtu.be/OnX_yQ6CeZ0
https://youtu.be/nKWgbmr71yY
https://youtu.be/76Kv0-XFsto
https://youtu.be/76Kv0-XFsto
https://youtu.be/Q2lYDFEN3Io

